
Converting Motif Editor and Display Manager Screens
for the Integration of DESY’s Control System Studio

into Argonne’s Advanced Photon Source (APS)
Controls System

Fadi Laham
Lee Teng Internship
Cornell University

Argonne National Laboratory
Lemont, Illinois

July 23, 2009

Prepared in partial fulfillment of the requirements of the Student Research Participation
Program under the direction of Dr. Eric Norum in the AES division at Argonne National
Laboratory.

Participant:
Signature

Research Advisor:
Signature

1

Contents

1 Introduction 4
1.1 History . 4
1.2 Architecture . 5
1.3 MEDM . 6
1.4 Controls System Studio . 7

2 Problems and Procedures 7
2.1 Color Map . 8
2.2 Font Size . 8
2.3 Filepath Searching . 9
2.4 Multiple Channel Inputs . 10
2.5 CALC Field . 10
2.6 Random Minor Bugs . 11

3 Results 11

4 Discussion and Conclusions 12

5 References 14

6 Graphs and Figures 15

2

Abstract

Converting Motif Editor and Display Manager Screens for the Integration of DESY’s
Control System Studio into Argonne’s Advanced Photon Source (APS) Controls System.
FADI LAHAM (Cornell University, Ithaca NY 14853) DR. ERIC NORUM (AES, Argonne
National Laboratory, Argonne, IL 60439)

Experimental Physics and Industrial Control System (EPICS) is a software program that
directly links a client computer to hardware and systems control units in the accelerator for
monitoring and management. At Argonne, the user communicates with a Motif powered
graphical user interface called Motif Editor and Display Manager (MEDM) which connects
to Input-Output Controllers (IOCs) that regulate the hardware. Each user edits their own
personal screen of options panels, graphs, and meters called widgets and saves it in an .adl
file for later execution. As Motif is being phased out, support for the graphics package
is fading, and a new similar kind of display software called Control System Studio (CSS)
being developed at DESY looks to replace it. The main obstacle hindering the integration
of CSS into the APS control system was converting all of the current .adl MEDM screens
clients own into the proper .css-sds format required for CSS. The current ADL Converter
software developed at DESY fails to convert many widgets and essential widget properties
fluently. After several bug fixes and added functionality, the current build of the ADL Con-
verter successfully converted all .adl files (with only minor user-fixable errors remaining),
fully preparing all user screens for a system-wide upgrade to CSS.

Research Category: Software Development

School Author Attends: Cornell University
DOE National Laboratory Attended: Argonne National Laboratory
Mentor’s Name: Eric Norum
Phone: (630) 252-4793
e-mail Address: norume@anl.aps.gov

Presenter’s Name: Fadi Laham
Mailing Address: 240 90th street
City/State/ZIP: Brooklyn, NY 11209
Phone: (718) 748-4997
e-mail Address: fl96@cornell.edu

3

1 Introduction

The Experimental Physics and Industrial Control System (EPICS) is a widely used control

system software environment that allows users to remotely interact with laboratory equip-

ment to perform data acquisition, supervisory control, sequential control, and operational

optimization in real-time. EPICS is designed to organize, connect, and help develop dis-

tributed systems incorporating a large number of networked computers needed to provide

control and feedback to hardware and project equipment. Projects operating with EPICS

are typically particle accelerators, telescopes, and other large physics-based experiments.

1.1 History

Development on EPICS began at the Ground Test Accelerator project where the control

system there, the Ground Test Accelerator Control System (GTACS), laid the foundation

for fully automated remote system control to later evolve into EPICS. The design group

combined the best features of their past, such as distributed control, real-time front-end

computers, interactive configuration tools, and workstation based operator consoles, while

taking advantage of the latest technology, for example VME, VXI, X-windows, MOTIF, and

the latest processors. Since the collaboration began, major steps have been made in portabil-

ity between sites, extensibility in database and driver support, and the added functionality

of the alarm manager, knob manager and the Motif based operator interface. [1]

The initial two develepors, Los Alamos National Laboratory and Argonne National Lab-

oratory, have now been joined by three other U.S. labs, Lawrence Berkeley Laboratory, the

Superconducting Super Collider Laboratory, and the Continuous Electron Beam Accelerator

Facility. The software currently boasts over 200 facilities around the world using EPICS,

among them including LIGO, Fermilab, and DESY. [2]

4

1.2 Architecture

The EPICS system consists of three main components. The first is the Operator Interface

(OPI), a UNIX based workstation with which a user communicates and runs various EPICS

tools from. These top-level tools include graphical displays such as the Motif Editor and

Display Manager (MEDM), Perl scripts, StripTools and other plotting devices, etc.

The next component is an Input Output Controller (IOC). IOCs are typically VME/VXI

based chassis containing a Motorolla 68xxx processor, various I/O modules, and VME mod-

ules that provide access to other I/O buses such as GPIB. VME (Versa Module Europa) is a

computer bus standard physically based on the Eurocard sizes, mechanicals and connectors.

These are usually run on VxWorks with a set of EPICS routines called iocCore running,

used to define process variables and implement real-time control algorithms. In an IOC,

machine status, information and control parameters are defined as records in the application

specific database. Records can be processed in time intervals, or whenever they are accessed

with the data a record contains being accessible via what are called Process Variables (PV).

Records have some functionality associated with them such as scaling, filtering, alarm de-

tection, calculations, etc. with different record types having different functions and uses.

The final component is the Local Area Network (LAN) which allows the IOCs and OPIs

to communicate. An OPI communicates with an IOC over this LAN connection using the

Channel Access Protocol provided by EPICS. In this protocol, a Channel Access Client

would broadcast a process variable name over the connection to find the Channel Access

Client monitoring it. Data is then passed back and forth through gets (reads), puts (value

setting), or monitors (notification on PV change). Please refer to Figure 1 for a graphical

representation of the EPICS system and Figure 2 for a representation of the IOC structure.

5

1.3 MEDM

One of the top-level display tools mentioned earlier, the Motif Editor and Display Manager

(MEDM), is the primary graphical display tool operators use to control and maintain the

APS at Argonne and many other accelerator facilities. As the name implies, MEDM is a Mo-

tif based graphical user interface (GUI) for designing and implementing control screens. See

Figure 3 for an example MEDM screen. As shown in the example, a typical MEDM screen

will contain multiple tools or ’widgets’ that process and display monitored process variables.

Some supported MEDM widgets include bar graphs, sliders, meters, buttons to open other

displays, action buttons, imported images, etc. Users interact with the process variables

and can adjust system controls straight through an MEDM screen. To connect to a PV, a

user must enter the desired channel input name followed by the PV in <channel>:<process

variable> format to find the IOC with the desired record over the network.

One of the main attractions of MEDM is it’s high degree of configurability and alarm

handling. Every aspect of an MEDM widget such as color, visibility, etc. can be edited and

made dynamic to depend on monitored channel input. This is especially useful for alarm

handling in which a widget can notify an operator when its monitored PV has exceeded

pre-set alarm boundaries by flashing colors or playing a sound.

To monitor the equipment needed to keep something as large as a particle accelerator

functioning, individual operators create personal MEDM screens for the equipment they are

particularly responsible for and save the screen in an .adl file for storage and later execution.

In Argonne’s APS, with over 700,000 PVs being broadcast over the Channel Access network,

over 7,000 generalized screens are used by more than a hundred engineers/scientists and

thousands of beamline users annually.

6

1.4 Controls System Studio

Controls System Studio (CSS) is another top-level control system program currently being

developed and implemented at DESY. CSS is Java based, and supports multiple underlying

control systems (EPICS included). It can be configured to connect to IOCs through an

EPICS channel access protocol much in the same way MEDM does, but with the added

advantage of more reliable support. As previously mentioned, MEDM is Motif based, which

was the latest graphical studio at the time of MEDM’s development, but is currently being

phased out. CSS’s graphical screen editor – Synoptic Display Studio (SDS) – mimics much

of the same widget interface and functionality of MEDM, with a more desirable Java based

platform however. The APS is currently looking to slowly incorporate CSS into its own

control system, ultimately shifting completely out of the 20-year-old MEDM software, to the

more convenient and supported CSS release.

2 Problems and Procedures

The first step in incorporating CSS into the Argonne control system was creating builds of

the CSS package for solaris, linux, windows, and mac systems. After which, a guide was

written for a training program in CSS to help users become more familiar and accustomed to

the software. These first few steps however only paled in comparison to the central obstacle

hindering the complete integration of CSS into the APS control system which was the sheer

number of pre-existing MEDM screens. Currently, over 7000 screens are shared between

numberous users and operators that depend on the perfect functionality of these screens

consistently. To make a complete system-wide transformation to CSS, all of the pre-existing

screens needed to be converted into the CSS .css-sds display format. Fortunately, ADL to

CSS-SDS conversion software was already being developed at DESY by Helge Rickens [3].

The program successfully translated all of the widgets and their direct properties such as

7

coordinates and size. Unfortunately however, it proved buggy in the more complex properties

and failed to translate many widget basic and dynamic attributes such as color, visibility,

channel input, action data, etc. The following documents some of the more major fixes and

added functionality introduced.

2.1 Color Map

Multiple problems revealed themselves in the translation of widget colors. The more obvi-

ous of the two main problems was that absolutely none of the widgets kept their color, but

instead adopted the default 200R, 100G, 100B. The Color Table was translated, parsed, and

stored into an array perfectly fine by the software, and each widget had its color set to the

desired element of the array. However the widget generating method called always crashed

just before returning. The sub-method where the error was occurring was later removed

entirely in a later release, fixing this problem.

The second of the coloring errors was a bit more subtle and derived from the inherent

structuring of .adl files. A typical .adl file contains the root display panel documentation

before the color map is documented. The converter reads all of the objects linearly, so the

root display was always parsed and created before the color map was initialized, forcing it to

take default colors. See Figure 4 below for a representation of the standard .adl file structure.

2.2 Font Size

The next problem came from the way the converter translated font sizes. MEDM determines

text font sizes automatically from the label’s height. Since the user does not have direct con-

trol of the font size, for the user’s convenience, the text in a label may extend outside of

the label’s boundaries. This often produces labels of the form shown in Figure 5, where the

dotted line represents the label’s border.

8

CSS does allow the user to directly change a label’s font size, consequently it restricts the

text within the label’s borders and will cut off any trailing text. To account for this, the ADL

Converter translates labels such that the entirety of the text fits within the parent label’s

boundaries. This often produces label’s shrunk down to unreadable sizes, as the second

example in Figure 5 demonstrates. To fix this error, the conversion method was changed to

determine the font size relative to the label’s height the way MEDM would, then adjust the

label’s width accrodingly to fit the text, as shown in the final example in Figure 5.

2.3 Filepath Searching

Another issue that revealed itself after some minor testing of output files centered around

widget references to external files. Related display buttons that launch other screens failed

half of the time, while images failed to load every time. The problem derived from a difference

in the way MEDM and CSS read external file references. For simplicity, if a file referenced

is in the same working directory as the parent widget, only the name is documented. If the

file is outside of the current directory, a path relative to the workspace directory is provided

instead. Given a file’s path, MEDM will search both expected directories until it is found.

See Figure 6 for a snipet of an Argonne .adl showing this ambiguity. CSS on the other hand,

takes all directories at face value, affixes a ”CSS/SDS” to the path (the default workspace)

and searches there. This resulted in breaking all image links, and all related display links

that were referenced name-only.

As a solution to the problem, additional ADL Converter functionality was supplemented

to search for the existence of files referenced. The converter first checks the parent .adl file’s

output directory, followed by the workspace directory, then a user specified list of display

paths, defaulting finally to ”CSS/SDS” and throwing an exception if it is never found. The

name of the reference is changed to the path found relative to the workspace for CSS to

correctly interpret.

9

2.4 Multiple Channel Inputs

A fourth major error that rendered many widgets useless without much indication of its

presence came from the limit on the number of channels parsed per widget. Many widgets

such as waveforms (real-time line plots) require multiple channel inputs to cross-display

different PVs in the same widget for comparison. The ADL Converter however only parsed

and translated the first channel and would throw away the remainder. This was easily

patched by simply storing parsed channels in an ArrayList {chanA, chanB, ...} rather than

a single object, and passing them to the widget in a for-each loop.

2.5 CALC Field

The final problem found proved the most menacing. A CALC field in a widget is a widget-

contained mathematical expression that takes multiple channel inputs as variables and re-

turns a boolean to be used by the widget for dynamic attributes. The reason this problem

was so alarming was because almost every .adl file contains at least one widget with a ’calc’

expression. Furthermore, the very idea of a ’calc’ expression is completely foreign to CSS.

Widgets in CSS are merely intermediaries for displaying control information, with absolutely

no ability to execute any kind of self-contained function or boolean expression within the

widget. The only way a widget can set a dynamic attribute to a boolean expression is to

retrieve the returned value from an external source that can compute the calculation.

To work around this problem, sript rule definitions were used. Along with built in Java

rule sets such as alarm rules that color widgets according to alarm severity, users may define

their own rule set in a script format CSS can read. To properly set a widget’s dynamic

attribute to a ’calc’ expression, the ADL Converter was modified to output a unique script

for any ’calc’ expression encountered, and set the widget’s desired attribute to this scripted

rule. To adjust the expression to a readable CSS script format, a script template would

be used to initialize the input channels and all of the mathematical expressions would be

10

converted into the standard Java Math package format.

2.6 Random Minor Bugs

After most of the major problems were taken care of, focus changed to some of the more minor

bugs and errors. Most of these errors turned out to be nothing more than setting default

values incorrectly, logical if-statements that break in corner cases, ignored less important

widget properties, etc. Some examples include ignoring label specifications for sliders and

bar graphs, recording input over a channel as a double instead of a string for text inputs, and

defaulting text alignment to center instead of left. Fixes for these bugs were simple enough

and not worthwhile to mention in detail.

3 Results

Despite the many bug fixes, some incompatabilities between MEDM and CSS still exist.

For one, CSS does not support dual y-axis waveform plots. This widget functionality is not

planned to be added any time soon, so EPICS application developers will have to get by

splitting double waveforms into two seperate plots or settling with just one y-axis.

Another unsupported widget property is the ability to show a widget’s value or primary

PV in a label embedded into the widget itself. Again, CSS widgets do not contain this

functionality, and this property is not planned to be added. Thus EPICS developers will

need to manually include overlapping labels themselves to mimic the MEDM display.

A more troubling and universal problem occurs in the layering of widgets. MEDM loads

an entire file at a time into memory and organizes the widget layering all at once automat-

ically according to predefined rules. CSS instead gives developers the freedom to organize

layers themselves and overlap them as they please, but consequently relies heavily on these

11

layer definitions for arranging widgets. Without any layer definitions, no automatic layer

organizing is done; widgets are simply placed on top of one another in the order they appear

in the file. This becomes a problem when converting from MEDM, which does not have

any manual layer definitions, to CSS which relies on them for layer organization. The ADL

Converter itself does a very good job of creating multiple layers and sorting widgets into

them, however rare corner cases remain. These cases cannot be fixed without tweaking the

layering rules and creating newer corner cases, so developer input is needed again here in

adjusting the widget layering if errors become apparent.

The final and most daunting incompatability is the way CSS and MEDM are started up.

When starting up MEDM, a developer can define a list of macros to use for their session

straight through the command line. CSS however does not take any command line options at

all and so does not have this functionality. This is very troubling for developers because the

7̃000 existing screens are only generalized screens that require a macro input to know what

accelerator sector, instrument, or reading to look for. Without the macro input, all channel

names with the macro would break and not connect to anything. The only workaround for

this, again, requires some user input in which one would need to define the alias in a root

display. In this manner, all children widgets inherit the alias the same way they would in

MEDM had it been defined in the command prompt.

4 Discussion and Conclusions

(Please refer to Figures 7, 8, and 9 for the following.) As a final assessment, Figure 7 repre-

sents an example .adl of a virtual linac running in MEDM. In Figure 8, one can see almost

all of the errors documented earlier. This is the first conversion of the .adl file. The most

obvious fault of course is the coloring. Looking closer, one can see that the ”Beam Suc-

cessfully Delivered” image could not be loaded because of the file searching error previously

12

mentioned. Looking even closer, beneath the bar graph, and in scattered other places, one

can see the label font size problem. Two other problems are not immediately obvious, but

as only one channel was translated, the waveform widget is broken and does not display any

plots. The other subtle error here is in Figure 8 just to the right of the bar meter. The

image there has a visibility dynamic attribute determined by a ’calc’ function (if the cath-

ode current becomes too high, the figure disappears and an explosion .gif is made visible).

Finally, several minor bugs revealed here include the slider label not being shown, the choice

button to the right of the bar meter taking input as a double, and finally, the two left-most

sliders in the panel being hidden under the rectangles they are supposed to be layered above.

Figure 9 shows the current translation of the page. Even with some problems still present,

this conversion is a lot more convincing and passable as an exact translation of the MEDM

screen. At this stage in the ADL Converter’s development, a final stable release of the

converter plugin should be fit for a complete system-wide translation of all .adls. However,

as automated as the ADL Converter can make things, and as precise as it can become with

its translations, it will unavoidably require some amount of user input in tweaking a few

minor, unrepairable, corner case slip-ups.

13

5 References

[1] http://www.aps.anl.gov/epics/EpicsDocumentation/EpicsGeneral/epicsX5Farch-1.html

[2] http://www.aps.anl.gov/epics/EpicsDocumentation/EpicsGeneral/epics success.html

[3] http://css.desy.de/content/e70/e1678/index eng.html

[4] http://www.aps.anl.gov/epics/EpicsDocumentation/EpicsGeneral/epics overview.html

[5] http://www.aps.anl.gov/epics/docs/GSWE.php

14

6 Graphs and Figures

Figure 1: EPICS System

15

Figure 2: IOC Structure

16

Figure 3: Sample MEDM Screen

17

Figure 4: Color Map

Figure 5: Label Text

Figure 6: Filepath Searching

18

Figure 7: Example MEDM Conversion

Figure 8: First Conversion to CSS

19

Figure 9: Current Conversion to CSS

20

